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EFFECT OF SURFACE FORCES ON FLUID FLOW IN THIN PORES 

N. V. Churaev UDC 532.685 

The structure of fluids near solid surfaces differs from that in the bulk [i]. In the 
case of isotropic simple fluids with a spherically symmetric intermolecular interaction poten- 
tial, these variations extend to several molecular layers. For anisotropic fluid crystals 
the surface effect is manifested at distances of the order of several micrometers. Polar 
associated fluids, including water, occupy an intermediate position. Boundary layers of water 
with varying structure reach nearly hydrophilic, well-wettable surfaces of dozens, sometimes 
hundreds of angstrom. A worsening of the wetting leads to a decrease in the width of boundary 
layers. In the case of hydrophobic surfaces, breakdown of the sticking condtion becomes 
possible, and we have slipping of water over the solid surface. 

The change in structure of boundary layers of fluids affects the rate of their flow in 
thin pores. The effective width of boundary layers is sensitive not only to the state of 
the solid surface, but also to the solution composition and to temperature. Thus, an enhance- 
ment in the concentration of the electrolyte solution and in temperature leads to a break- 
down of the special structure of boundary layers and to a decrease in their width. There- 
fore, one cannot indicate a pore radius common for all cases, for which structural effects 
must be manifested. For example, for water and aqueous solutions of sufficiently low concen- 
tration, these effects become substantial (at ordinary temperature and pressure) in pores of 
radius R of the order of and smaller than 0.i ~m. 

We consider initially the effect on filtration of single changes only of rheological 
properties of fluid boundary layers. We also track the action of an electric field, of con- 
centration gradients, and of temperature on the flow in thin pores. 

As was shown earlier [2, 3], in thin pores of glass membranes (R = 10-50 ~) one observes 
only an enhancement in the Newtonian viscosity of water without breakdown of Darcy's law: 

v ~ K f P .  (1)  

Deviations from this law were observed in a number of cases, accompanied by a nonlinear de- 
pendence of v on P and the appearance of an initial pressure gradient Po [4-8]. A different 
shape for the filtration equation has been suggested [7]: 

v = K f P  - -  K f P o  [1 - -  exp ( - -  P/Po)] .  (2)  

For  P ~ P o  i t  t r a n s f o r m s  t o  t h e  e q u a t i o n  o f t e n  u s e d  i n  p r a c t i c e  

v = Kf  (P - -  Po), (3) 

according to which there is no fluid flow for P smaller than the initial pressure gradient Po. 

The problem of the physical nature of Po remains open for discussion. This is usually 
related to the small, but finite, quantity of limiting shear stress (To ~ 10-2-10 -3 dyn/cm =) 
of bulk water or to the enhanced values of To in the boundary layers of water, considered as 
a viscoplastic body [4]. Not to be excluded, however, is the possibility that this actually 
observed effect could be generated by the effect of capillary osmosis or the presence of 
colloidal particles in the porous moisture, a saturating effect. Thus, in nonsaturated 
porous bodies, filtration usually obeys Darcy's law [8-10], which also follows from our ex- 
periments [2, 3], whose resu]ts are shown in F~g. i. The experimental dependence v(P) for 
thin porous glass with mean pore radius R~ I0 A is linear in a wide interval of pressure gra- 
dients P and passes through the origin of coordinates. The dark and bright points correspond 
to measurements at enhanced and lowered P values, respectively. The measurement results were 
independent of the direction of P measurement, and were quite reproducible. 
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Fig. I. 

Fig. 1 Fig. 2 

Filtration rate of water v in thin porous 
glass as a function of pressure difference AP at 20 
(I), 40 (2), 60 (3), and 70~ (4). Sample width ~ = 
0.03 cm. AP, 105 N/m3; v, I0 -s m/sec. 

Fig. 2. Effect of capillary osmosis on the filtra- 
tion rate v of a solution through a thin-pore body un- 
der the action of various pressure difference &P: i) 
Co = 10-2; 2) 2.10 -2 mole/liter. AP, 105 N/m2; v, 
106 m/sec. 

The important role of the solution in a moist pore of sodium and potassium silicates, 
occurring in compounds of ceramic filters, was demonstrated by Jackson [ii]. In several 
cases one could simply affect the nontotal wetting by a fluid capillary; from the meniscus 
displacement one could measure the fluid deviation. This effect was discussed by Novak [12]. 

The nonlinear behavior of v(P) is mostly generated by the reversible (and sometimes also 
irreversible) change in the mutual position and orientation of the porous body particles un- 
der the action of pressure. The nonlinear dependences of v(P) are usually observed in satu- 
rated systems [6, 8, 13, 14], where rearrangement of the porous structure is also possible. 
The dependence v(P) is in this case formally the same as for flow through a nondeformable 
porous body of non-Newtonian fluids. 

If the pores have extensions and compressions, the nonlinearity of the dependence v(P) 
can be related to the rearrangement of current lines in such a system during the change of 
the acting pressure gradient. In this case closed flow lines (circulating flows) can be 
generated during the expansions; their configuration depends on the flow rate. This is well 
verified both experimentally [15, 16] and theoretically [17, 18]. 

Often the flow instability in time is located by exact filtration measurements. The 
reason can be bacterial activity [19, 20], air extraction from the solution [4], structural 
rearrangement of the saturated porous body under the effect of pressure changes, and moisture 
content of the compound and dissolved materials [14, 21]. In wide pores an important effect 
is due to fall and accumulation of dust particles [22, 23]. Colloidal particles can be in- 
hibited in thin pores. 

Deviations from Darcy's law during flow in thin pores can be the consequence of genera- 
tion of concentration gradients and an electric potential during the flow. The latter effect, 
in particular, acquired the name electric viscosity~ since it leads to an apparent increase 
in the fluid viscosity as a result of dampSng of flow filtration by electroosmosis. For wide 
pores both effects are small and cannot lead to a noticeable change in the pattern of the 
fluid flow. Their effect becomes important only for an overlap of diffuse ionic or molecular 
layers, belonging to opposite pore surfaces. 

The theory of the electroviscous effect in thin pores, where double electric layers (DEL) 
overlap, has been developed quite extensively in [24-26]. It has been shown that the largest 
relative narrowing of the filtration rate occurs for • During further decrease of the 
pore width, when the DEL overlap to a larger extent, convective flow of ions decreases more 
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quickly than the electric conductivity of the solvent in the pore. This leads to a lowering 
of the flow potential and to a falloff in the electric viscosity. 

Under stationary conditions the electroviscous effect cannot generate a deviation from 
Darcy's law, since the relative decrease of the flow rate is independent of the pressure gra- 
dient and is determined only by the value of • Deviations can be observed only when measure- 
ments of filtration rates are carried out for preequilibrium values of the flow potential. In 
this connection it must be noted that relaxation times of the potential can be quite sub~ 
stant ial. 

An alternate situation occurs when a solvent concentration gradient is generated during 
filtration. An oppositely directed capillary-osmotic fluid flow is then generated. This is 
related to the fact that the concentration of outflowing solvent is a function of filtration 
rate in the case of thin pores. 

If the pores are filled by a pure fluid, the effect of surface forces can change the 
structure of boundary layers, leading to local changes in the density and viscosity values, 
which become functions of the distance y from the pore surface: p(y), n(y). The shape of 
these functions is determined by the nature of acting forces, and in a number of cases 
satisfies an exponential drop of the p and ~ values with increasing distance from the solid 
surface [27]. In thin pores, where the boundary layers overlap, there are additional struc- 
tural changes in the overlap zone. 

When the pores are filled by a solution, then besides the structural changes in the sol- 
vent mentioned above, there occurs a redistribution of the dissolved material molecules over 
the pore cross section. The concentration of dissolved molecules also becomes a function of 
distance to the pore wall C = C(y), differing in this case from the bulk values. The func- 
tion C(y) is determined by the magnitude and sign of the forces acting between the dissolved 
material molecules and the pore surfaces through the solution layers. 

If the resulting force is repulsive, the solution~is lowered, which corresponds to nega- 
tive adsorption. This situation was observed for many aqueous solutions, and was earlier ex- 
plained by the existence of "nonsolvent bulk" or by "binding" of water in disperse systems 
[28]. The effect of concentration lowering of the dissolved material in thin pores is used 
for separation of solutions (e.g., distillation of water) by the inverse osmosis method [29]. 

When the resulting force is attractive, positive adsorption takes place, which is not 
restricted by the formation of an immobile adsorption monolayer. Molecular adsorption layers 
in solutions have a diffuse structure (as in diffuse ionic layers), which is proved by the 
effect of capillary osmosis -- solution flow under the action of a concentration gradient [30]. 
As is well-known, capillary osmosis is possible only in the presence of a mobile portion of 
the adsorption layer. The magnitude of adsorption determines the intensity, and the sign 
of adsorption (negative or positive) determines the direction of capillary-osmotic flow. 

The concentration distribution of the dissolved material over the pore cross section 
can be found from the Boltzmann equation 

C (r) ---- Co exp [--  ~ (r)/kT] (4) 

Here  ~ ( r )  i s  t h e  p o t e n t i a l  f u n c t i o n ,  c h a r a c t e r i z i n g  t h e  i n t e r a c t i o n  e n e r g y  o f  d i s s o l v e d  ma- 
t e r i a l  m o l e c u l e s  w i t h  t h e  po re  s u r f a c e s ,  and Co i s  t h e  b u l k  s o l u t i o n  c o n c e n t r a t i o n  a t  t h e  
pore  l i m i t s  or  in  a p o r t i o n  o f  i t  ( i f  t he  p o r e  i s  w i d e ) ,  where ~ = 0. The v a l u e s  o f  ~(r )  a r e  
d e t e r m i n e d  by t h e  c o n t r i b u t i o n s  o f  t he  v a r i o u s  components  o f  s u r f a c e  f o r c e s ,  and depend on 
the  s o l u t i o n  c o m p o s i t i o n  and on t h e  s u b l a y e r  p r o p e r t i e s .  D i s p e r s i o n  f o r c e s  p l a y  a major  r o l e  
i n  t h e  c a s e  o f  nonaqueous  s y s t e m s .  For t h i s  c a s e  t h e  c a l c u l a t i o n  o f  t h e  f u n c t i o n s  ~ ( r )  was 
c a r r i e d  ou t  in  [31,  32] on t h e  b a s i s  o f  we l l -known e q u a t i o n s  o f  t h e  m a c r o s c o p i c  t h e o r y  o f  
molecular forces [33]. 

For aqueous solutions near hydrophilic surfaces the main contribution to the function 
~(r) is provided by structural forces, generated by the overlap of boundary layers to the pore 
surfaces with hydrate (in the general case, solvate) shells of polar molecules or ions. In 
the case of electrolyte solutions, a significant and sometimes decisive contribution to the 
function ~(r) is also provided by Coulomb forces. 

Since a rigorous calculation of ~(r) is complicated and practically impossible, in solv- 
ing problems of solution flow through a thin-pore body we can confine ourselves to introducing 

R 

the effective potential averaged over the pore cross section ~a=(2/R 2) f~P=(r) rdr , where the 
0 
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subscript ~ refers to some component of the solution. Using for an isotropic thin-pore body 
also the mean concentration across the pore C a and the diffusion coefficient De, one can re- 
duce the problem of solution flow to a one-dimensional problem. The stationary flow of com- 
ponent ~ (in the absence of an electric field) can be found by solving the Nernst-Planck 
equation for convective diffusion of dissolved material molecules in the field of surface 
forces : 

( c j~  = c ~ v - -  P~ \-~F- + ~--SF-/ (5) 

The s o l u t i o n  o f  t h e s e  e q u a t i o n s ,  u n d e r  c o n d i t i o n s  i n  w h i c h  t h e  o u t p u t  a t  t h e  p o r o u s  b o d y  
o c c u r s  w i t h  c o n s t a n t  o u t f l o w i n g  s o l u t i o n  w i t h  c o n c e n t r a t i o n  Co, l e a d s  t o  t h e  f o l l o w i n g  e x -  
p r e s s i o n  f o r  t h e  o u t f l o w i n g  s o l u t i o n  c o n c e n t r a t i o n  C7~ [ 3 2 ] :  

Co 
O f = - - _ _  

1 q- (exp ~ - -  1) [ 1 - -  exp ( - -  vl/D~)] exp ( - -  v6/Do) (6 )  

w h e r e  6 i s  t h e  w i d t h  o f  t h e  l a m i n a r  s u b l a y e r  a t  t h e  o u t p u t  o f  t h e  p o r o u s  b o d y ,  b e i n g  a d e -  
c r e a s i n g  f u n c t i o n  o f  t h e  m i x i n g  i n t e n s i t y .  

As s e e n  f rom t h i s  e q u a t i o n ,  f o r  #~>  0 t h e  c o n c e n t r a t i o n  o f  o u t f l o w i n g  s o l u t i o n  i s  l o w e r e d ,  
w h i c h  c o r r e s p o n d s  t o  n e g a t i v e  a d s o r p t i o n  o f  t h e  d i s s o l v e d  m a t e r i a l ,  w h i l e  f o r  #~ < 0 i t  i s  e n -  
h a n c e d ,  c o r r e s p o n d i n g  t o  p o s i t i v e  a d s o r p t i o n .  I n  t h e  e q u i l i b r i u m  s t a t e  (when v = 0) t h e  c o n -  
c e n t r a t i o n s  d u e  t o  d i f f u s i o n  a r e  e q u a t e d ,  a n d  C2~ = Co.  The  same s i t u a t i o n  a l s o  o c c u r s  f o r  

- ~  = O, when t h e r e  i s  no a d s o r p t i o n  and  t h e  s o l u t i o n  c o n c e n t r a t i o n  a t  t h e  p o r e  d o e s  n o t  d i f f e r  
from the bulk concentration of the solution. 

Calculations show that for thin-pore bodies with mean pore radius 10-20 A the values of 
the effective potential are approximately r ~ 0.5 kT for nonaqueous solutions, where the in- 
teraction is due to relatively weak dispersion forces. For aqueous solutions the values of 
Ca are higher by an order of magnitude (4-5 kT), which is related to the action of the more 
powerful forces of structural repulsion. 

The generation of a concentration gradient during solution filtration through thin pores 
leads to the development in the porous body of a counter capillary-osmotic flow under the 
action of the generated concentration difference. This counter-flow brakes filtration, which 
leads to deviations from Darcy's law for solutions during their flow through a thin-pore body, 
where r ~= 0. The resulting flow rate of the solution is obtained by the equality [32] 

v : Kf P - -  K fRoTAC [1 - -  exp ( - -  qb)].  (7 )  

The  c o n c e n t r a t i o n  d i f f e r e n c e  a t  t h e  p o r e  e d g e s  AC, h o w e v e r ,  i s  n o t  e q u a l  t o  C o - C f ,  d u e  
t o  t h e  e f f e c t  o f  c o n c e n t r a t i o n  p o l a r i z a t i o n ,  l e a d i n g  t o  c o n c e n t r a t i o n  e n h a n c e m e n t  a t  t h e  o u t -  
p u t  o f  t h e  p o r o u s  b o d y  i n  c o m p a r i s o n  w i t h  Co. C a l c u l a t i o n s  o f  t h e  q u a n t i t y  AC, b e i n g  a f u n c -  
t i o n  o f  t h e  f l o w  r a t e  v and  o f  t h e  m i x i n g  i n t e n s i t y  o f  t h e  s o l u t i o n ,  w e r e  c a r r i e d  o u t  b y  
s o l v i n g  Eq.  (5 )  a n d  f i n d i n g  t h e  c o n c e n t r a t i o n  d i s t r i b u t i o n  C(x )  i n  t h e  p o r o u s  b o d y  a n d  b e h i n d  
i t  [ 3 2 ] .  T h e s e  c a l c u l a t i o n s  l e a d  t o  t h e  f o l l o w i n g  t h e o r e t i c a l  d e p e n d e n c e s  v ( P ) ,  shown i n  
F i g .  2 f o r  two d i f f e r e n t  s o l u t i o n  c o n c e n t r a t i o n s  Co, o u t f l o w i n g  i n  a t h i n - p o r e  b o d y  w i t h  
mean p o r e  r a d i u s  R = 20 ~ .  I n  t h e s e  c a l c u l a t i o n s  we u s e d :  K f  = R a / 8 n l  = 2 . 5 . 1 0  -9  c m 3 / d y n ,  s e c ;  
l = 0 . 0 2  cm; No., = 3 . 3  kT; Da = 5 . 1 0  - 6  c m a / s e c ;  T 300~ ~ = 10 -3  era; n = 0 . 0 2  P.  

As s e e n  f r o m  F i g .  2,  t h e  e f f e c t  o f  t h e  c o u n t e r  c a p i l l a r y - o s m o t i c  f l o w  l e a d s  t o  n o t i c e -  
a b l e  d e v i a t i o n s  f r o m  D a r c y ' s  l a w .  T h u s ,  t h e  n o n l i n e a r i t y  o f  t h e  f i l t r a t i o n  d e p e n d e n c e  may 
b e  r e l a t e d  t o  n o t  o n l y  d e f o r m a t i o n  e f f e c t s  o f  t h e  p o r o u s  b o d y .  A t  h i g h  f i l t r a t i o n  r a t e s  t h e  
d e p e n d e n c e  v ( P )  b e c o m e s  l i n e a r ,  b u t  d o e s  n o t  p a s s  t h r o u g h  t h e  o r i g i n  o f  c o o r d i n a t e s ,  i n t e r -  
s e c t i n g ,  a s  shown b y  t h e  d o t t e d  l i n e s ,  on a s e g m e n t  o f  t h e  p r e s s u r e  a x i s  e q u a l  to  t h e  o s m o t i c  
p r e s s u r e  o f  an i d e a l  s e m i p e n e t r a b l e  membrane  ( f o r  w h i c h  ~ = ~ ) :  Po = RoTAC. F o r  l ow c o n -  
c e n t r a t i o n s  of outflowing solution the AC values practically coincide with Co. This pres- 
sure Po can be erroneously interpreted as some dynamic limiting shear stress of the flow if 
the effect of capillary osmosis is not taken into account. 

It is interesting to note that Eq. (7), taking into account the effect of capillary 
osmosis on solution filtration, coincides in form with the empirical equation (2), earlier 
suggested by Swartzendruber [7] for describing filtration experiments with thin-pore bodies. 

Important information on structural changes of fluids in thin pores can be extracted by 
observing osmotic transfer of different nature, more precisely, thermoosmotic fluid flow. 
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Fig. 3. The thermoosmosis rate JT as a function of tempera- 
ture gradient VT for thin-pore glasses with varying mean pore 
radius: i) R=4.5 nm; 2) 8.3; 3) I0; 4) 55 nm; 5) 1.5 ~m; JT, 
i0 -9 m/sec; VT, i0 -2 deg/m. 

Fig. 4. Effect of mean temperature t (~ on thermoosmosis 
rate JT (for VT = 1.2 deg/m) in porous glasses with varying 
mean pore radii: i) R = 4.5 nm; 2) 8.3; 3) i0; 4) 55 nm. iT' 
i0 -9 m/sec. 

The effect of thermoosmosis was first observed by Deryagin [34], and was explained by the 
difference in specific enthalpy of boundary layers AH from its value for a bulk fluid. The 
following expression was obtained for the coefficient of:;thermoosmosis [34] from calculations 
of isothermal heat transport on the basis of thermodynamics of irreversible processes: 

% = __ ~ AH(y) ydy em2/sec, (8)  
(@ ' 

t /  
0 

d e t e r m i n i n g  t h e  r a t e  o f  t h e r m o o s m o t i c  t r a n s p o r t :  

V T 1~ _-- % _~_, cm/sec. ( 9 ) 

Equation (8) was written for a wide pore, when the width of boundary layers with varying 
specific enthalpy is much smaller than the pore width. The coordinate y in Eq. (8) is meas- 
ured from the normal of the solid wall. 

In thin pores, where the boundary layers overlap, to integrate Eq (8) (since the shapes 
of the functions AH(y) and n(Y) were earlier unknown) one may use another_simpLifying assump- 
tion [35]. Introducing the mean values over the thin-pore cross section &Hand ~, we obtain 
the following expression for a slit pore: 

2h2AH 
%= 3~ (i0) 

This equation makes it possible to estimate the change in the specific enthalpy AH from rate 
measurements of the thermoosmotic flow JT, knowing the mean pore size h and the mean fluid 
viscosity in a thin slit pore ~, 

Figure 3 shows measurement results of the thermoosmosis rate JT as a function of the 
temperature gradient VT for five samples of porous glasses with varying mean pore radius 
(from 45 ~ to 1.5 ~m) [35, 36]. The experimental dependence JT(VT) is in good agreement with 
the theoretical values from Eq. (9). The magnitude and sign of the thermoosmosis coefficient 
X depend on the pore size. In wide pores, where the boundary layers do not overlap (line 5), 
the thermoosmotic flow is directed toward the hot side (X > 0). This corresponds to lowering 
of the specific enthalpy of identical boundary layers of water (AH< 0), i.e., enhancement of 
the mean energy of intermolecular hydrogen bonds. In thinner pores the thermoosmotic flow 
is directed toward the cold side (X < 0), which corresponds (on the average) to enhancement of 
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the specific enthalpy of water in thin pores. The negative X values and, correspondingly, 
the positive AH values increase with decreasing pore size. This result can be explained by 
the progressive destruction with boundary-layer overlap in intermolecular binding in water in 
the overlap zone. The weakening of intermolecular hydrogen bonds in water, found in thin 
pores of polymer membranes and clays, was verified by IR [37] and NMR [38] spectroscopic 
methods. 

The changes in specific enthalpy AH, obtained in experiments with thin-pore glasses, 
vary in order of magnitude from 10 -3 to i0 -~ cal/mole. They are very small, e.g., in com- 
parison with the specific melting heat of ice-l, equal to 1440 cal/mole. This implies that 
very small changes in the structure of water under the influence of surface forces are suf- 
ficient for organizing measurements of thermoosmosis rat es. 

As seen from Fig. 4, JT values drop with increasing mean temperature, which implies 
thermal destruction of the peculiar structure of water in thin pores. At a temperature above 
65-70~ no thermoosmotic flow is registered: JT = 0. 

The same comclusion also follows from analyzing measurement results of filtration rates 
of water at varying temperatures (see Fig. i). Comparing the slopes of the straight lines 
v(P) on this figure, proportional to the mean viscosity of water ~ in thin pores, it can be 
discovered that the ~ values decrease faster with increasing temperature than the correspond- 
ing values of the bulk viscosity of water. 

The breakdown of boundary layers of water may be generated not only by heating, but also 
by enhanced electrolyte concentration. Total breakdown occurs, e.g., at a KCI concentration 
near 20 mass % [2]. Hydrophobization of surface pores [35] leads to the same destruction of 
the peculiar structure of water in thin pores, determined by the cessation of thermoosmosis. 

When the pore moisture contains an electrolyt e, the results of thermoosmosis measure- 
ments can be distorted by the effect of electroosmotic flow, generated under the action of the 
thermal diffusion potential [39, 40]. In the general case the effect of a surface charge 
can provide an additional contribution to the effect of proper thermoosmosis, since polariza- 
tion of water molecules in the electric field of the sublayer also leads to a change in the 
specific enthalpy of the fluid in the DEL zone [41]. However, this contribution to the AH 
values in hydro phil ic porous bodies is usually significantly smaller than the contribution 
due to structural changes of the boundary layers of water. 

The X values for water in experiments with thin-~ore glasses (R~550 ~) were of the order 
of -- (10-6-10 -7 ) cm2/sec. Similar values in order of magnitude X = --10 -7 cm2/secwere obtained 
for water in acetate cellulose membranes [42], where, as in the case of porous glasses, there 
was no noticeable effect of the thermodiffusion potential. For aqueous solutions of an elec- 
trolyte, in connection with the generation of thermodiffusion potentials and DEL polarization 
effects, the X values vary within very wide limits; their sign and magnitude depend on the 
temperature gradient [42, 43]. In clays the interpretation of thermoosmotic measurements is 
rendered complicated not only by the presence of electrolytes, but also by the nonlinearity 
of filtration characteristics [44], related, as can be expected, with deformation processes 
of the porous structure. In many systems, even thin-porous, thermoosmosis generally cannot 
be observed [45], if their surface is insufficiently hydrophilie for creating boundary layers 
of substantial attraction and with a sufficient amount of structural changes. 

As follows from this review, the action of surface forces, leading to formation of 
structurally changed boundary layers of the solvent and diffuse layers of ions and neutral 
molecules, substantially changes the pattern of filtration in thin pores in comparison with 
the flow in wide-pore bodies. In a number of cases one succeeds in carrying out a theoreti- 
cal refinement of the equations of mass transfer with account taken of the electric field, 
concentration, and temperature gradient generated during the fluid flow. 

A large amount of experimental data has been accumulated concerning the physical proper- 
ties of fluids in thin pores [i]. Thus, e.g., it was shown that the viscosity of water in- 
creases with decreasing pore size. Deviations of the viscosity of water from the bulk values 
No start being felt at capillary radii less than 0.5 ~m. However, most deviations of the 
water viscosity in thin pores do not exceed (1.6-1.8) ~o. Still smaller is the scale of 
variation of water density: in pores with a mean radius around 50 A, the density of water 
is enhanced by approximately 1.5%. In still thinner zeolite micropores the enhancement in 
water density reaches 7-10% [46]. 
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The presence of dissolved molecules and ions substantially complicates the pattern of 
fluid flow in thin pores. This generates the necessity of further experimental studies, ini- 
tially on model Systems, as well as of developing theories which take into account the effect 
of surface forces on the kinetic characteristics and transport mechanisms of the components 
of a porous solution. 

NOTAT ION 

v, filtration rate; Kj~, filtration coefficient; P, pressure gradient; i/~, Debye 
radius of the DEL; h, width of a planar pore; p, fluid density; n, fluid viscosity; k, Boltz- 
mann constant; T, temperature; C, concentration; r, radial coordinate; R, pore radius; x, co- 
ordinate in the fluid flow direction; ~, thickness of a porous body; Do, diffusion coefficient 
of the dissolved material in a bulk solution; Ro, gas constant; VT, temperature gradient. 
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